Catalytic Removal of Trimethylamine, an Offensive-Odor Component, by Selective Oxidative Decomposition to N_2 , CO_2 , and H_2O_1 over Copper-Exchanged Zeolites

Hiroki KUWABARA, Toshio OKUHARA, * and Makoto MISONO*

Department of Synthetic Chemistry, Faculty of Engineering,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

Copper-exchanged zeolites catalyzed the oxidative decomposition of $(CH_3)_3N$ to N_2 , CO_2 , and H_2O . The selectivity to N_2 was 92% and the formation of NOx was less than 5 ppm, when 8000 ppm of $(CH_3)_3N$ with O_2 (20%) was flowed over copper-exchanged Y zeolite at 573 K.

Development of technologies for removal of environmental pollutants such as NO, chlorofluorocarbons (CFC), and offensive-odor components is desirable. Recently, catalytic removal of $\mathrm{NO}^{1)}$ or $\mathrm{CFC}^{2)}$ has extensively been studied. For deodorization of offensive-odor components like amines, there are few reports on the catalytic combustion using solid catalysts. However, the formation of harmful gases, NO and NO_2 (these will be denoted by NOx), is a serious problem.

In the present study, we have studied various solid catalysts for the oxidative decomposition of $(CH_3)_3N$ to N_2 , CO_2 , and H_2O . We report here the novel catalysis of copper-exchanged zeolites for this reaction.

Ion-exchanged zeolites were prepared with Z-HY-4.8 (Y zeolite: Reference Catalyst of the Catalysis Society of Japan, abbreviated as Y), Z-M-20 (Mordenite: Reference Catalyst of the Catalysis Society of Japan, abbreviated as M), and ZSM-5 25H (Mobil Catalysts Corporation of Japan). $^4)$ 1.5wt%Pt-Y (from [Pt(NH₃)₆]Cl₃), 1.0wt%Pd-Y (from Pd(OCOCH₃)₂), 0.8wt%Ru-Y (from [Ru(NH₃)₆]Cl₃), 7.9wt%Cu-Y (from Cu(OCOCH₃)₂, exchange level; 81%), 4.7wt%Cu-ZSM-5 (exchange level; 120%), 8.4wt%Cu-M (exchange level; 80%), and 11.4wt%Ce-Y (from Ce(OCOCH₃)₄, exchange level; 79%) were used. The following Al₂O₃-supported metals were also used as catalysts; 1wt%Pt/Al₂O₃ (Engelhard, No. 50102), 2.7wt%Pd/Al₂O₃ (Engelhard, No. 8203), 2.5wt%Ru/Al₂O₃ (prepared from Ru₃(CO)₁₂ and γ -Al₂O₃⁵), and 5wt%Cu/Al₂O₃ (prepared by impregnation method with Cu(OCOCH₃)₂ and γ -Al₂O₃).

The reaction was performed in a flow reactor at 523 - 673 K under one

atmospheric pressure after the catalysts were pretreated at 773 K in a flow of He. The feed gas (50 cm 3 ·min $^{-1}$) consists of (CH $_3$) $_3$ N (8000 ppm), O $_2$ (20%), and He (balance). The gas at the outlet of the reactor was analyzed by GC (Shimadzu GC-8A) using Unicarbon B-2000 ((CH $_3$) $_3$ - $_x$ H $_x$ N), Porapak Q (N $_2$ O and CO $_2$), and Molecular sieve 5A (N $_2$, O $_2$, and CO), and by a NOx meter (Yanaco, ELC-11A) for NO and NO $_2$.

The catalytic activity was evaluated from the %-conversion of $(CH_3)_3N$ to CO_2 at 523 K after about 2 h, since no large changes of the conversion were observed for a few hours. The selectivity was measured at conversions higher than 70% and at temperatures higher than 573 K by the following reasons. Under these conditions, the N-balance in the gas phase was nearly 100% and independent of the conversion. At low conversion levels and low temperatures, the intermediate products with high boiling points such as $(CH_3)_3NO$ (sublimation temperature = 453 K) were formed and were deposited at the outlet of the reactor, resulting in the poor N-balance. The formation of $(CH_3)_2NH$ and CH_3NH_2 was less than 1%. It was observed that the conversion to CO_2 increased linearly with the W/F (catalyst weight/flow rate) at 523 K.

Various oxides catalyzed this reaction. The activity (per unit surface area) was in the following order; $\text{Co}_3\text{O}_4 > \text{Mn}_2\text{O}_3 > \text{Cr}_2\text{O}_3 > \text{CuO} > \text{Fe}_2\text{O}_3 > \text{NiO}$, which is in agreement with that for oxidation of propene. The main product over these oxides was N2O (43 - 85% at 673 K), except for CuO which produced mainly N2 (56%). NOx was considerably formed (1.3 - 26%)

(chg/git + o2 over various borra catalysts					
Catalyst	Activity ^{a)}	Selectivity ^{b)} /%			Conversion ^{b)} /%
		N ₂	N ₂ 0	NOx	
1.0wt%Pt/Al ₂ 0 ₃	4.9	11.5	86.8	1.7	100
2.7wt%Pd/Al ₂ O ₃	34.6	47.5	50.6	1.9	100
2.5wt%Ru/Al ₂ O ₃	4.1	72.3	25.6	2.1	100
5.0wt%Cu/Al ₂ O ₃	12.1	85.2	14.6	0.2	100
1.5wt%Pt-Y	35.0	18.5	80.9	0.6	100
1.0wt%Pd-Y	35.0	45.4	52.9	1.7	100
0.8wt%Ru-Y	2.1	87.1	11.0	1.9	69
7.9wt%Cu-Y	5.3	92.6	7.3	0.1	80

Table 1. Activities and Selectivities for Reaction of $(CH_3)_3N$ + O_2 over Various Solid Catalysts

a) Unit: 10^{-4} mol g^{-1} h⁻¹ at 523 K. b) On the basis of N atom. The selectivity was measured at 573 K, at which the N-balance was nearly 100% (see text).

over these oxides.

Catalytic activities and selectivities of Al_2O_3 -supported metals and ion-exchanged zeolites are summarized in Table 1. With both types of catalysts, the selectivity to N_2 decreased in the order of Cu > Ru > Pd > Pt. It is noteworthy that Cu-Y was highly selective for the N_2 formation (92.6% at 573 K) and the formation of NOx was suppressed to 0.08%, which corresponds to about 5 ppm.

The selectivities of ion-exchanged zeolites at 673 K are shown in Fig. 1. The selectivity to N_2 over Cu-Y was high even at 673 K and the concentration of NOx formed was very low (about 7 ppm), while NOx was considerably formed over Pt-Y, Pd-Y, and Ru-Y. Besides Cu-Y, 4.7wt%Cu-ZSM-5, 8.4wt%Cu-M also exhibited the high selectivity to N_2 . The activities of Cu-ZSM-5 and Cu-M were similar to that of 7.9wt%Cu-Y. Furthermore, it was observed that 11.4wt%Ce-Y was also highly selective to N_2 ; the products were N_2 (98.1%), N_2 O (1.8%), and NOx (0.1%).

The typical time course of %-conversions to ${\rm CO_2}$, ${\rm N_2}$, and ${\rm N_2O}$ over Cu-Y are shown in Fig. 2. The conversions were nearly constant for at least 7 h at 673 K, indicating that this catalyst was stable under these reaction conditions.

The reaction order with respect to the pressure of $(CH_3)_3N$ was about 0.7 over 7.9wt%Cu-Y. The reaction order was similar for less selective Pd/Al_2O_3 . The order in the O_2 pressure was 0.6 in the range of 2 - 5% and

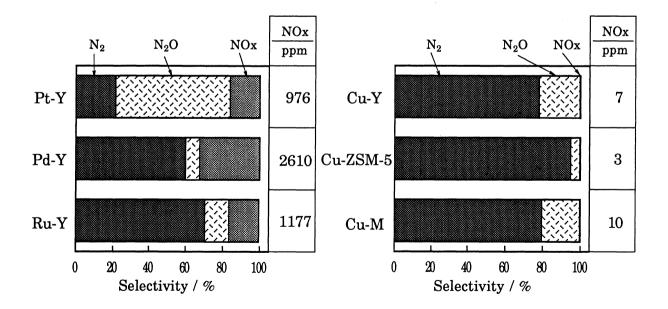


Fig. 1. Selectivities of metal-exchanged zeolites for $(CH_3)_3N + O_2$ reaction at 673 K. $(CH_3)_3N$; 8000 ppm, O_2 ; 20%. Conversions were 100% for all catalysts. The concentration of NOx was shown in the right frames.

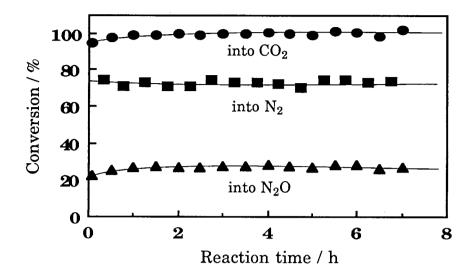


Fig. 2. Typical time course of $(CH_3)_3N + O_2$ reaction over 7.9wt%Cu-Y at 673 K. Catalyst; 1.0 g, $(CH_3)_3N$; 8000 ppm, O_2 ; 20%.

zero order above 10% of O_2 over Cu-Y, while it was zero for Pd/Al $_2O_3$ in the range of 2 - 20% O_2 . This suggests that the adsorption of oxygen is weak on the Cu ion. This may be one reason for the selective formation of N_2 in the oxidative decomposition of $(CH_3)_3N$.

Since copper-exchanged zeolites are known to be active for selective catalytic reduction of NOx with hydrocarbons in the presence of ${\rm O_2}$, $^{1)}$ the reduction of NO by $({\rm CH_3})_3{\rm N}$ in the presence of ${\rm O_2}$ was examined over 7.9wt%Cu-Y. When NO (500 ppm) was added to the feed $(({\rm CH_3})_3{\rm N}; 3000$ ppm and ${\rm O_2}; 20\%)$ at 673 K, the nitrogen-containing molecules at the outlet of the reactor were N₂ (83%), N₂O (17%), and NOx (0.1%). This fact shows that this catalyst is also efficient for the removal of the mixture of NOx and $({\rm CH_3})_3{\rm N}$.

References

- 1) M. Iwamoto and H. Hamada, Catal. Today, 10, 57 (1991).
- 2) W. Ueda, S. Tomioka, Y. Morikawa, M. Sudo, and T. Ikawa, Chem. Lett., 1990, 879; Y. Takita, H. Yamada, M. Hashida, and T. Ishihara, ibid., 1990, 715; R. Onishi, I. Suzuki, and M. Ichikawa, ibid., 1991, 841.
- 3) T. Suetaka and M. Munemori, Nippon Kagaku Kaishi, 1984, 650.
- 4) M. Iwamoto, H. Furukawa, and S. Kagawa, Stud. Surf. Sci. Catal., $\underline{28}$, 943 (1986).
- 5) T. Okuhara, A. Kyomasu, and M. Misono, J. Chem. Soc., Faraday Trans., 87, 1801 (1991).
- 6) Y. Moro-oka and A. Ozaki, J. Catal., 5, 116 (1966).

(Received March 6, 1992)